As we enter 2019, there is a tremendous amount of development energy going on in the Additive Manufacturing marketplace. The transition from the “maker” camp to actual industrial finished part production is gaining a foothold and allowing large multi-national companies to look seriously at developments that will eventually capture a significant portion of the traditional injected molded parts market, which, in 2016 was projected to be valued at 283.54 billion USD, (according to Grand View Research).
The concept of using additive manufacturing as a final part production method has gained strength through three specific areas with massive academic and industrial investments in larger and faster print machine platforms, advanced chemistry to develop viable materials, and automated post-processing methods to reduce the manual finishing labor. Material Formulation Regardless of the planned products to be manufactured, the breadth of industries that will benefit from the various disruptive methods being developed, the most recent developments will change forever the materials used to deliver the necessary characteristics of strength, rigidity and/or flexibility, environmental durability, and complexity. The chemical composite of the latest polymers, metals, and blended filaments that combine strands of carbon, fiberglass, kevlar, and even nanotubes gives a product development team that ability to specify exacting standards of the materials used to achieve the perfect part. The additive model of layered buildups allows for the inclusion of new patented materials with incredibly high conductive capabilities. In practice, these conductive formulas allow for the printing and embedding of electrical circuitry within a printed part, linking PCBs to switches, sensors, and communications antenna. To see MIT, Harvard, and Stanford chemical engineering teams placing such an emphasis on printable solutions feeds the commercial powerhouses such as BASF, 3M, and Dow Chemical with both direction and intellectual resources. It must be said that while there is a distinct focus on IP from North American research centers and academics, similar developments are taking place throughout the EU and elsewhere. These chemically-based material solutions can allow products to be produced with specific use criteria built into specific quantity production runs. Factors of environmental extremes such as temperature, moisture, chemical interactions, and ruggedness can be addressed through chemistry blends. Making sure that structural integrity and shear force can be maximized for either frigid cold or within an engine compartment, can all be addressed. Print Methods A series of new print philosophies have come out from deep cover and during the next twelve months will continue to demonstrate similar strength and finish qualities normally associated with extruded processes. Companies to follow include Origin and Evolve. Origin fits into the SLA category but has developed a method that does not rely on oxygen as an activation component in the way that Carbon and Formlabs do. According to their founder, Chris Prucha, this opens the door to a much larger materials menu due to their open material platform API. Evolve Additive has been an internal, radically new print model within Stratasys and just recently broke off to become its own privately funded company. Built around a new layered additive print process, Evolve is going directly at the injection molding industry by producing equipment that can churn out high quality finished parts that offer isotropic properties meaning that strength is now equal in X, Y, and Z axis, a problem often associated with individual layers. Printing in metal is not escaping future generation cycles with improvements coming from HP, Markforged, Desktop Metal, and the newest player Digital Alloys. Each is attempting to produce finished parts with the necessary structural integrity and dimensional accuracy that can be reproduced in volume. Here again, chemistry is playing a central role, as engineers work to develop stronger blends of metal substrates that can deliver high strength, lighter weight, and environmental durability. Keeping Up With The Technology As we dive deeper into a number of manufacturing projects, we will continue to research advanced solutions that have practical capabilities for final part manufacturing, and we will publish summaries of our findings. From a practical standpoint, we will look closely at legitimate industrial systems that can demonstrate competitive solutions against traditional injection mold production and subtractive machining. Our factors will be Total Cost of Ownership for small to medium volume production runs, final finish quality as perceived from a customer’s point of view, and the capabilities of volume personalization. Stay tuned!
0 Comments
Leave a Reply. |
AuthorWords & Stories highlight some of our published work. This includes comments on social media posts as well as positions we take on issues we are involved in. Archives
September 2023
Categories |